Storing Tweets

Pickling

Connecting to MySQL through Python



Storing or Streaming

Simple Storage: Pickling in Python

Connecting and using MySQL



Processing pipeline

Collect

Analyze /
Data

Present /
Process

Visualize

{ Store

Streaming vs Storing



Simple Storage

Tweet data response — JSON
O Thisis text
O What does this look likee



Simple Storage

"created_at": "Wed Jan 15 05:34:43 +0000 2014",
"id": 423327363959492610,
"id str": "423327363959492610",
"text": "RT @nflnetwork: Anyone up for some Football?\n\n@Seahawks vs.
@49ers. Week 14. Right now. #NFLReplay http://t.co/12bgqr3He9f",
"user": {
"followers count": 87,
"friends count": 400,
"id": 245167474,
"id str": "245167474",
"location": "Dallas,Tx",
"name": "La Troy Woodruff",
"screen name": "LockDown 22",
"verified": false



Simple Storage

Tweet data response — JSON
O Thisis text
O What does this look likee

JSON is more useful as a python dictionary
O Using the json module
O import json

O Sample read a JSON text file and convert to python
dictionary



Loading and dumping

Dump or save

Load or read



Read A JSON File (example 1)

import sys, json, pickle, cPickle

def read json file(fname=""):
jsdict = dict()
fdoc = ""
if fname:

fin = open(fname, "r")
for line in fin:
fdoc=fdoc+line
fin.close()
jsdict = json.loads(fdoc)
else:
print "Must supply a filename"

return jsdict



Read A JSON File (example 2)

import sys, json, pickle, cPickle

def read json jsonload (fname=""):
jsdict = {}
if fname:
fin = open(fname, "r")
jsdict = json.load(fin)
else:
print "Must supply a filename"

return jsdict



Write a JSON File

What would it take to save a JSON file¢

What would *you* do@



Write a JSON File

What would it take to save a JSON file?

O JSON is just text

O We saw sample code to read and write text
O Could that work?e



Alternatives to JSSONZ¢

JSON

O Easy toread, edit —it's just text
O Slow to load, read and convert to dict (python dictionary)

Pickle
O Raw data, dictionary
O Quick fo load, no conversion

Both are built intfo Python, simple
O More sophisticated DBs require more work



Save data (pickle)

import sys, json, pickle, cPickle

def pickle dictionary(fname="",d={}):
if fname:
fout = open(fname, "w")
pickle.dump(d, fout)
#cPickle.dump(d, fout)
else:
print "Must supply a filename"

return



Load data (unpickle)

import sys, json, pickle, cPickle

def unpickle dictionary(fname=""):

d = {}

if fname:
fin = open(fname, "r")
d = pickle.load(fin)
#d = cPickle.load(fin)

else:
print "Must supply a filename"

return d



Little demo

Pickling and unpickling



Connecting to MySQL

Using the HCDE user data module



Using MySQL in Python

Need to have MySQL installed

Need a DB (a schema, a table structure)
Need a Python to MySQL connector

Nice to have, an Object-Relation Manager (ORM)



Using MySQL in Python

Need MySQL installed
O You just need to install this ("community edition” is free)

Need a DB (a schema, a table structure)
O Sample provided in hcde.data.db.schemas
e.g. “tweet_hcdeb30-db-schemas.sgl”

Need a Python to MySQL connector
O pymysal

Nice to have a Object-Relation Manager (ORM)
O SQL Alchemy



Test the install

[Tiki:~Development/python/] dwmc% python

Python 2.7.10 (default, Oct 23 2015, 18:05:06)

[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pymysql

>>> import sqglalchemy

>>>



Basic Twitter SQL Schema

Tweets Table

User Table
Friends Table
Followers Table

User Meta Table



Simple Twitter Schema Demo

Browse - hcde.data.db.schemas
tweet_hcde530-db-schemas.sal



ORM (Object-Relation Manager)

An ORM Manages

O The relation between the data in the memory of the
machine (while the program is running) and the more
permanent storage of that data in a database

O Changes to an 'object' in memory is (eventually) mirrored to
the database.



Working With sglalchemy (ORM)

Need to develop an Python Object abstraction for each
database table

O See hcde.data.db.base

tweetObj.py
userObj.py
userMetaObj.py
friendObj.py
followerObj.py

Also, convenient o have an abstraction for the DB itself

TweetsDB.py

These are all usable base classes, we probably want
specialized versions for a real data collection



Specializihg ORM Classes

Specialized “example” classes
O See hcde.data.db.example

ExampleTweetObj.py
ExampleUserObj.py
ExampleUserMetaObj.py
ExampleFriendObj.py
ExampleFollowerObj.py
ExampleTweetsDB.py

These could be used for your project if you wanted to use
MySQL for your storage



Demo Connecting

HCDE user module tries to hide some of the complexity of
using ORM

O hcde.data.db.base
dbConfig() object
baseDB() object

O hcde.data.db.fithess
FitTweetsDB()
FitTweetObj()
settings_db.py



Demo Using Fithess Data

HCDE user module has four datasets
O hcde.data.election_2012

O hcde.data.election_2016

O hcde.data.fithess

O hcde.data.oscar_2016

Let's try working with the fithess data

O The dates of the collection are in the file "constants.py" in the
directory for the collection.



Processing pipeline

Collect

Analyze /
Data

Present /
Process

Visualize

e

When using the fithess data, what path are we following?



