
Storing Tweets
Pickling

Connecting to MySQL through Python

Outline

¤  Storing or Streaming

¤  Simple Storage: Pickling in Python

¤  Connecting and using MySQL

Processing pipeline

¤  Streaming vs Storing

Collect
Data

Analyze /
Process

Present /
Visualize

Store

Simple Storage

¤  Tweet data response – JSON
¤  This is text

¤  What does this look like?

Simple Storage

{
 "created_at": "Wed Jan 15 05:34:43 +0000 2014",
 "id": 423327363959492610,
 "id_str": "423327363959492610",
 "text": "RT @nflnetwork: Anyone up for some Football?\n\n@Seahawks vs.
@49ers. Week 14. Right now. #NFLReplay http://t.co/12bqr3He9f",
 "user": {
 "followers_count": 87,
 "friends_count": 400,
 "id": 245167474,
 "id_str": "245167474",
 "location": "Dallas,Tx",
 "name": "La Troy Woodruff",
 "screen_name": "LockDown_22",
 "verified": false
 }
}

Simple Storage

¤  Tweet data response – JSON
¤  This is text

¤  What does this look like?

¤  JSON is more useful as a python dictionary
¤  Using the json module

¤  import json

¤  Sample read a JSON text file and convert to python
dictionary

Storage

¤  Loading and dumping

Python data
in memory

File storage
on disk

Dump or save

Load or read

Read A JSON File (example 1)

import sys, json, pickle, cPickle

def read_json_file(fname=""):

 jsdict = dict()

 fdoc = ""

 if fname:

 fin = open(fname, "r")

 for line in fin:

 fdoc=fdoc+line

 fin.close()

 jsdict = json.loads(fdoc)

 else:

 print "Must supply a filename"

 return jsdict

Read A JSON File (example 2)

import sys, json, pickle, cPickle

def read_json_jsonload (fname=""):

 jsdict = {}

 if fname:

 fin = open(fname, "r")

 jsdict = json.load(fin)

 else:

 print "Must supply a filename"

 return jsdict

Write a JSON File

¤  What would it take to save a JSON file?

What would *you* do?

Write a JSON File

¤  What would it take to save a JSON file?
¤  JSON is just text

¤  We saw sample code to read and write text

¤  Could that work?

Alternatives to JSON?

¤  JSON
¤  Easy to read, edit – it's just text

¤  Slow to load, read and convert to dict (python dictionary)

¤  Pickle
¤  Raw data, dictionary

¤  Quick to load, no conversion

¤  Both are built into Python, simple
¤  More sophisticated DBs require more work

Save data (pickle)

import sys, json, pickle, cPickle

def pickle_dictionary(fname="",d={}):

 if fname:

 fout = open(fname, "w")

 pickle.dump(d,fout)

 #cPickle.dump(d,fout)

 else:

 print "Must supply a filename"

 return

Load data (unpickle)

import sys, json, pickle, cPickle

def unpickle_dictionary(fname=""):

 d = {}

 if fname:

 fin = open(fname, "r")

 d = pickle.load(fin)

 #d = cPickle.load(fin)

 else:

 print "Must supply a filename"

 return d

Little demo

¤  Pickling and unpickling

Connecting to MySQL
Using the HCDE user data module

Using MySQL in Python

¤  Need to have MySQL installed

¤  Need a DB (a schema, a table structure)

¤  Need a Python to MySQL connector

¤  Nice to have, an Object-Relation Manager (ORM)

Using MySQL in Python

¤  Need MySQL installed
¤  You just need to install this ("community edition" is free)

¤  Need a DB (a schema, a table structure)
¤  Sample provided in hcde.data.db.schemas

¤  e.g. “tweet_hcde530-db-schemas.sql”

¤  Need a Python to MySQL connector
¤  pymysql

¤  Nice to have a Object-Relation Manager (ORM)
¤  SQL Alchemy

Test the install

[Tiki:~Development/python/] dwmc% python
Python 2.7.10 (default, Oct 23 2015, 18:05:06)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pymysql
>>> import sqlalchemy
>>>

Basic Twitter SQL Schema

¤  Tweets Table

¤  User Table

¤  Friends Table

¤  Followers Table

¤  User Meta Table

Simple Twitter Schema Demo

¤  Browse - hcde.data.db.schemas
¤  tweet_hcde530-db-schemas.sql

ORM (Object-Relation Manager)

¤  An ORM Manages
¤  The relation between the data in the memory of the

machine (while the program is running) and the more
permanent storage of that data in a database

¤  Changes to an 'object' in memory is (eventually) mirrored to
the database.

Working With sqlalchemy (ORM)

¤  Need to develop an Python Object abstraction for each
database table
¤  See hcde.data.db.base

tweetObj.py
userObj.py
userMetaObj.py
friendObj.py
followerObj.py

¤  Also, convenient to have an abstraction for the DB itself
TweetsDB.py

¤  These are all usable base classes, we probably want
specialized versions for a real data collection

Specializing ORM Classes

¤  Specialized “example” classes
¤  See hcde.data.db.example

ExampleTweetObj.py
ExampleUserObj.py
ExampleUserMetaObj.py
ExampleFriendObj.py
ExampleFollowerObj.py
ExampleTweetsDB.py

¤  These could be used for your project if you wanted to use
MySQL for your storage

Demo Connecting

¤  HCDE user module tries to hide some of the complexity of
using ORM
¤  hcde.data.db.base

¤  dbConfig() object

¤  baseDB() object

¤  hcde.data.db.fitness

¤  FitTweetsDB()

¤  FitTweetObj()

¤  settings_db.py

Demo Using Fitness Data

¤  HCDE user module has four datasets
¤  hcde.data.election_2012

¤  hcde.data.election_2016

¤  hcde.data.fitness

¤  hcde.data.oscar_2016

¤  Let's try working with the fitness data
¤  The dates of the collection are in the file "constants.py" in the

directory for the collection.

Processing pipeline

¤  When using the fitness data, what path are we following?

Collect
Data

Analyze /
Process

Present /
Visualize

Store

