
A Little Python – Part 1
Introducing Programming with Python

Preface

¤  Not a complete course in a programming language
¤  Many details can’t be covered

¤  Need to learn as you go

¤  My programming ‘style’ is not considered ‘pythonic’
¤  I program like an overly careful C programmer

¤  “Python” people generally hate my code

¤  I’ll do my best to give examples in good style here

Learning ANY
Programming Language

¤  Syntax
¤  What is a valid statement

¤  What statements have meaning

¤  Variables, data types, data structure

¤  Control flow, branching, testing, loops, iteration

¤  Input/Output, I/O, read/write files

¤  Procedures, subroutines

¤  Objects, encapsulation of code + data

Additional Resources

¤  Online Courses/Tutorials
¤  http://docs.python.org/tutorial/index.html

¤  http://www.codecademy.com/tracks/python

¤  Only 13 hours – do it this weekend!!!

¤  Learning Python book (5th edition) ~ $50 ($30)
¤  Great if you know another language

¤  Head First Python ~ $35 ($25)
¤  Good for real beginners

¤  Although it’s now “Python 3”

Why Python?

¤  Interpreted (vs compiled)

¤  Interactive

[Tiki:~] dwmc% python
Python 2.7.10 (default, Aug 22 2015, 20:33:39)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

¤  Just “try it” in the interpreter
¤  If it works in the interactive interpreter – then it works

Try this …

¤  Launch python
¤  Get a command line

¤  Type "Python"

¤  Print output
>>> print "This is a string of text"
This is a string of text

¤  Assign values to variables
>>> five = 1234
>>> abc = "this is some text"
>>> alist = [1, 2, 'c', abc, None]

Try this …

¤  Output the values of variables

>>> print five
1234
>>> print abc
this is some text
>>> print a_list
[1, 2, 'c', 'this is some text', None]
>>>

Another Quick Example

¤  Python interpreter continuations

¤  To show how this works we define a simple function

>>> def counter(i):
... k = 0
... while(k<i):

... print k

... k += 1

...

>>> counter(5)

Basic Data Types

¤  Empty value - None

¤  Boolean

¤  Strings

¤  Numbers
¤  Integer values

¤  Real numbers, Rational values, Floating point values,
Decimal values

Basic Data Types - None

¤  The empty value
¤  Special value, None

¤  This is not the same as other empty values:

¤  "" (empty string) or

¤  [] (empty list) or

¤  {} (empty dictionary)

Basic Data Types - Boolean

¤  Boolean - truth values (two of them)
¤  True
¤  False

¤  Boolean is the result of a comparison
¤  "abc" == 1 (False)

¤  "1" == 1 (False)

¤  5 == 5.0 (True)

Basic Data Types - Strings

¤  Strings are sequences of characters

¤  Assigning string values
>>> foo = "this is a string"

>>> bar = 'this is also a string'

>>> special = '''python allows

... multi line

... string contants'''

>>>

¤  Unicode strings
¤  Important for web work

¤  The ‘u’ designation makes a string unicode

¤  More on this later

Basic Data Types - Integers

¤  Assigning integer values
>>> x = 123

>>> y = 111

>>> z = 1

>>> print x+z

124

>>> print x+y

234

>>> print y+z

112

>>>

¤  Integers support arbitrary, dynamic size

Basic Data Types - Float

¤  Assigning real/floating point values
>>> n = 123

>>> k = 1.11

>>> i = 1.3

>>> print n+k

124.11

>>> print n+i

124.3

>>> print i+k

2.41

>>>

¤  Float support arbitrary, dynamic size, automatic
conversion

Operations

¤  Operations are the way you change variable values,
compare, or manipulate values

¤  You've seen several "operators" already in prior examples
– can you describe them or name them?

Operations

¤  You've seen …

¤  Assignment Operator – assign a value to a variable, copy the value of
one variable to another variable
¤  What character(s)?

¤  Addition Operator – add two values
¤  What character(s)?

¤  Less Than Comparison Operator – test whether a value is less than
another
¤  What character(s)?

¤  Equality Comparison Operator – test whether two values are equal
¤  What character(s)?

Operations

¤  Some operations
x = y

x or y

x and y

not x

x + y, x - y, -x

x * y, x / y

(), [], {}

x==y, x<y, x>y, x<=y, x>=y, x!=y

x in y, x not in y, x is y, x is not y

¤  Try a few of these

Example operations

>>> n = 124

>>> m = 2

>>> k = 10.5

>>> i = 1.3

>>> n / m

62

>>> n * m

248

>>> n / i

95.384615384615387

>>> n // i

95.0

>>> (i==k)

False

>>> (i<=k)

True

>>> (i!=k)

True

More example operations

>>> foo = "this is a string"

>>> bar = "this is a string"

>>> foo+bar

'this is a stringthis is a string'

>>> foo-bar

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

>>> foo*bar

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence by non-int of type 'str'

>>> foo in bar

True

>>> foo is bar

False

>>> bar in foo

True

Sidebar – the "import" statement

¤  "import" is a mechanism to extend what python can do
¤  Adds features that are not "built in"

¤  Adds things that don’t get used all the time

¤  Temporary - only added while the interpreter keeps running

¤  You will see this in many examples and it can be
confusing at the start – watch for it

Sidebar – Example "import"

¤  Example features that are not built in
¤  Random numbers

¤  Operating system specific features (mac/linux/windows)

¤  Try some
>>> import math

>>> import random

>>> import aflac

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ImportError: No module named aflac

>>> random.random()

0.14584529741440777

>>> random.randint(5,151)

30

Operators – Manipulating strings

¤  Strings have some special operators
s = "This sample has CAPS and hypen-ated words"

i = 5

j = 11

s[i]

s[i:j]

len(s)

s.find('is')

s.replace('is','as')

s.split('-')

s.isdigit()

s.lower()

¤  Try a few of these

Example – Manipulating strings

>>> s = "this is a string"

>>> s2 ="a-string-with-no-spaces"

>>> s3 = "30"

>>> s[5]

'i'

>>> s[5:6]

'i'

>>> s[5:7]

'is'

>>> s.find('is')

2

>>> s.replace('is','as')

'thas as a string'

>>> s2.split('-')

['a', 'string', 'with', 'no', 'spaces']

>>> s3.isdigit()

True

>>>

Generating Output

¤  Simple output

¤  print statement (is a print function in Python 3)
>>> s1 = "the value of k is"

>>> k = 1.45

>>> print s1,k

the value of k is 1.45

>>> print k,s1

1.45 the value of k is

>>> s2 = "bob's big boy"

>>> print s1,s2

the value of k is bob's big boy

>>> print s1+s2

the value of k isbob's big boy

>>>

Program Structure

¤  Function, procedure, method, subroutine (synonyms)

def counter(i):
 k = 0
 while(k<i):

 print k
 k += 1

¤  Procedures and functions are how we keep some logical
control over complex programs

¤  Few programs can be written as simply a very long list of
simple statements

¤  This is important, we need to dissect this

Program Structure

def counter(i):
k = 0
while(k<i):

print k
k += 1

¤  def - is a special word – think 'define'

¤  counter – this is what we are defining – it is a new
procedure (or function), we pick the name

¤  (i) – this is a parenthesized list of parameters that the
procedure 'counter' will take

Program Structure

def counter(i):
k = 0
while(k<i):

print k
k += 1

¤  def is an example of a "block" structure

¤  In python a "block" is indented
¤  Statements that end with a colon ":" indicate a block

¤  Everything in the block is indented the same amount

¤  Be careful, tab characters and space characters are not the
same amount even if they "look" the same visually

Program Structure

def counter(i):
k = 0
while(k<i):

print k
k += 1

¤  Parameters are the values that are given to a procedure
(or function) when the procedure is called and executed
¤  In this case when counter(5) is called the value 5 is

assigned to the variable i while counter is running

¤  If a variable z=3, and we called counter(z) then the value
of z is assigned to the variable 'i' while counter is running.

Program Structure

def counter(i):
k = 0
while(k<i):

print k
k += 1

¤  This procedure has two statements in the "block"
¤  A simple assignment statement

¤  And a nested "block"

¤  We'll get to "while" statements later

Program Structure

def counter(i):
k = 0
while(k<i):

print k
k += 1

¤  This procedure has two statements in the "block"
¤  A simple assignment statement

¤  And a nested "block"

¤  We'll get to "while" statements later …

¤  Our nested block has two statements

Define Simple Procedures

def bob():
print "Bob is great!"

def notBob():
print "Bob is a fink!"

def liveBob():
print "Long live Bob!"

def bobParam(superlative):
print "Bob is a",superlative

Procedures can return a value

def bob():
print "Bob is great!"

def notBob():
print "Bob is a fink!"

def liveBob():
print "Long live Bob!"

def bobParam(superlative):
print "Bob is a",superlative

def bobConcat(superlative):

print "Bob is a",superlative
return superlative+" "+"dude"

Bob Procedure Output

>>> bob()

Bob is great!

>>> notBob()

Bob is a fink!

>>> liveBob()

Long live Bob!

>>> varBob("chocolate coated candy!")

Bob is a chocolate coated candy!

>>> BOB()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'BOB' is not defined

>>>

Python Programming
Environments

¤  IDLE (sucks)

¤  Ipython
¤  Iron python - very popular, nice "workbook" feature

¤  Python Additions to Eclipse
¤  PyDev

¤  Komodo Edit (nice)
¤  Komodo IDE (expensive)

¤  Plain text editor
¤  Old school

Python Plain old Text Editors

¤  Mac OS
¤  Sublime Text

¤  Text Wrangler

¤  SubEthaEdit

¤  Smultron

¤  Komodo Edit

Assignment 1

¤  Write 5 short programs (some are a single line)

1.  Make the python interpreter calculate and print 13! (13
factorial)

2.  Make the python interpreter output "Happy New Year!"
using 3 different string variables.

3.  Define three procedures that each returns one string of
"Happy", "New", and "Year!". In the python interpreter
execute the three procedures and show what they
output.

Assignment 1 - continued

¤  Write 5 short programs

4.  Write a new procedure using the ones you created in
the prior problem. Make your new procedure print
"Happy New Year!"

5.  Write a procedure that takes two parameters and adds
them together. The procedure should write output that
looks like an addition statement. For example, if the
procedure was given the values 3 and 4 the output
should be something like: "3 + 4 = 7"

